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Abstract. The recent construction of integrable quantum field theories on two-dimensional
Minkowski space by operator-algebraic methods is extended to models with a richer particle
spectrum, including finitely many massive particle species transforming under a global gauge
group. Starting from a two-particle S-matrix satisfying the usual requirements (unitarity,
Yang-Baxter equation, Poincaré and gauge invariance, crossing symmetry, ...), a pair of rela-
tively wedge-local quantum fields is constructed which determines the field net of the model.
Although the verification of the modular nuclearity condition as a criterion for the existence
of local fields is not carried out in this paper, arguments are presented that suggest it holds in
typical examples such as nonlinear O(N) σ-models. It is also shown that for all models com-
plying with this condition, the presented construction solves the inverse scattering problem
by recovering the S-matrix from the model via Haag-Ruelle scattering theory, and a proof of
asymptotic completeness is given.

1. Introdcution

Completely integrable quantum field theories on two-dimensional Minkowski space have
attracted the interest of physicists and mathematicians for a long time. On the one hand, such
models are interesting in their own right, as they provide examples of non-trivial quantum field
theories which are simple enough to be accessible to thorough analysis from many different
points of view. On the other hand, some of these models resemble certain aspects of much
more complicated systems of direct physical relevance. In particular, non-linear σ-models in
two dimensions are believed to exhibit certain features of non-Abelian gauge theories in four
dimensions, such as asymptotic freedom (see for example [AAR91]).

In comparison to quantum field theories in higher dimensions, the dynamics of integrable
models are severely restricted by an infinity of conversation laws, which for example exclude
particle production in scattering processes of any energy. Despite these simplifying features,
a rigorous construction of integrable quantum field theories beyond perturbation theory is
often a difficult task. In some cases, such as the Sine-Gordon model, a construction by the
Euclidean methods of constructive quantum field theory is possible [Frö75], whereas in other
cases, such as the O(N) σ-models, the current state of the art is a construction by perturbative
renormalization, with the usual problems of controlling the perturbation series (see [AAR91,
Ch. 7] and the references cited there).

In fact, the Lagrangians of these models are more complicated then those of models with
polynomial self-interaction, which are under complete control in two dimensions [GJ87]. On
the other hand, the S-matrix of integrable quantum field theories has a very simple struc-
ture: No particle production occurs, processes with n incoming and n outgoing particles are
described by products of two-particle S-matrices, and furthermore, the elastic two-particle
S-matrix is constrained by the Yang-Baxter-relation and other conditions [AAR91]. Thus for
integrable models, the two-particle S-matrix instead of the Lagrangian seems to be a much
more convenient object for describing the interaction. In particular, formulating the problem of
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constructing integrable quantum field theories as an inverse scattering problem starting from a
given two-particle S-matrix sidesteps all problems related to quantization and renormalization.

This inverse scattering point of view lies at the heart of two different approaches to the
construction of integrable models. In the form-factor program [BKW79, Smi92, BFK06], the
aim is to calculate n-point functions of local field operators, thus constructing the models in
the Wightman framework [SW64] of quantum field theory. The basic object of interest here
are the form factors, matrix elements of local field operators in scattering states, which for
many models can be explicitly computed from the S-matrix and analyticity assumptions, see for
example [BFK12] for recent results containing O(N)-symmetric models . The n-point functions
are then given as infinite series of integrals over form factors. Although the convergence of this
series is expected to be much better than the usual perturbation series, it is presently under
control only in a few special cases [BFK06].

The second, and much more recent, inverse scattering approach to integrable models makes
use of the operator-algebraic framework of quantum field theory [Haa96]. This program was
initiated by Schroer’s insight [Sch99] that the crossing symmetry of the S-matrix, mathemati-
cally similar to the KMS property for the vacuum state on an algebra of observables localized
in the Rindler wedge WR := {(x0, x1) ∈ R2 : x1 ≥ |x0|} with respect to the Lorentz boost dy-
namics, allows for an explicit construction of quantum fields which are localized in WR. These
fields are important auxiliary objects in the construction, called polarization-free generators
[SW00] because of their simple momentum-space properties, see also [BBS01, Mun12] for a
model-independent analysis of this concept. For the case of a particle spectrum consisting
of just one species of neutral, massive particles, a complete construction of these fields was
carried out in [Lec03]. One can then pass to the von Neumann algebras they generate and effi-
ciently characterize all local field operators present in the model at hand by operator-algebraic
techniques [BL04]. Bypassing all problems related to the explicit construction of point-local
field operators, existence of local fields can be proven with the help of the modular nuclearity
condition of Buchholz, D’Antoni and Longo [BDL90].

Along these lines, an infinite family of integrable models (containing a single species of mas-
sive particles) were constructed, and it was shown that the construction yields quantum field
theories which are asymptotically complete and solve the inverse scattering problem, i.e. the
initially considered factorizing S-matrix can be recovered in scattering theory [Lec08]. Their
short distance limits have been studied in [BLM11], and generalizations to higher dimensions
in the context of deformation procedures can be found in [Lec12, Ala12].

It is the aim of the present article to generalize this construction to theories with a richer
particle spectrum, containing an arbitrary number of massive particle species, which can also
carry arbitrary charges and transform under some global gauge group. This more general class
contains in particular the O(N) σ-models. Whereas many of the basic ideas underlying this
construction are the same as in the scalar case, the appearance of many particle species and a
gauge group changes the structure of the S-matrix, and the construction has to be reconsidered.
In this article, we will proceed as follows: In Section 2, we specify our precise assumptions on
the single particle spectrum and the two-particle S-matrix. We then construct a convenient
vacuum Hilbert space from these data. This Hilbert space carries a representation of two
different versions of the Zamolodchikov-Faddeev algebra [ZZ79, Fad84], and their relative
exchange relations are calculated. These Zamolodchikov creation/annihilation operators are
then combined to a pair of quantum fields φ, φ′ in Section 3. The transition to the operator-
algebraic setting is discussed in Section 4, and we also review the strategy for proving existence
of local field operators there. The complete investigation of the modular nuclearity condition
goes beyond the scope of the article, but we outline the basic strategy and also argue why
this condition is likely to hold in the case of the O(N) σ-models. In Section 5, we show that
whenever a model complies with the modular nuclearity condition, our construction solves the
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inverse scattering problem and yields an asymptotically complete theory. Finally, in Section 6
we give a few explicit examples of S-matrices fitting into our framework, in particular the
O(N) σ-models.

This article is partly based on the diploma thesis of the second named author [Sch11].

2. Two-particle S-matrices for general particle spectra and S-symmetric
Fock spaces

The construction of the models we are interested in begins with the specification of their
single particle mass and charge spectra. We thus consider a compact Lie group G as the
global gauge group, and identify charges with equivalence classes q of unitary irreducible
representations of G as usual.

As charges carried by single particles, we consider a set Q of finitely many charges, and to
account for antiparticles, we assume that with each class q ∈ Q, also the conjugate class q is
contained in Q. We are interested in constructing massive stable quantum field theories and
must therefore guarantee that in each sector, the masses are positive isolated eigenvalues of
the mass operator. This will in particular be the case when to each charge q there corresponds
a single mass m(q) > 0 (with m(q) = m(q)), and for simplicity, we restrict ourselves to this
setting1.

Since we are working in two spacetime dimensions, states of a single particle of fixed mass
m > 0 and charge q can be described in momentum space by square integrable rapidity wave
functions in L2(R, dθ), where the rapidity θ is connected to the on-shell momentum via

pm(θ) := m

(
cosh θ
sinh θ

)
. (2.1)

On L2(R, dθ), the proper orthochronous Poincaré group P↑+ acts via the unitary, strongly
continuous, positive energy, irreducible representations

(U1,m(x, λ)ψ)(θ) := eipm(θ)·x · ψ(θ − λ) , m > 0 , (2.2)

where (x, λ) ∈ P↑+ denotes the Poincaré transformation consisting of a boost with rapidity

λ ∈ R and a subsequent space-time translation by x ∈ R2.
For several particle species, the single particle Hilbert space has the form

H1 := L2(R, dθ)⊗K , (2.3)

where K is a finite-dimensional Hilbert space, D := dimK. More precisely, we decompose H1

into subspaces of fixed charge q ∈ Q and mass m(q),

H1 =
⊕
q∈Q
H1,q , H1,q = L2(R, dθ)⊗Kq , (2.4)

where the gauge group G acts on Kq via a unitary irreducible representation V1,q in the class
q ∈ Q, and trivially on L2(R, dθ), and the Poincaré group acts on H1,q via the representation
U1,m(q) ⊗ idKq . Clearly the two group representations

U1 :=
⊕
q∈Q

(
U1,m(q) ⊗ idKq

)
, V1 :=

⊕
q∈Q

(
idL2(R,dθ) ⊗ V1,q

)
(2.5)

are unitary and commute.
Some examples of models with a single mass m > 0 might help to illustrate this setting:

i) For a neutral particle, take G = {e} and H1 = L2(R, dθ), ii) for a model of electric charge,

1At the cost of a little more notational effort, our results can be shown to also hold in the more general case
where in each sector there exist finitely many masses m(q)k with mass shells separated from the rest of the
energy-momentum spectrum in that sector.
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take G = U(1) and the two conjugate irreducible representations V1,±(eiϑ) = e±iϑ on K± = C,
iii) for an O(N) σ-model, take G = O(N) for some N ≥ 3, and the defining self conjugate
irreducible representation of O(N) on K = CN . The special case i) of a single neutral particle
species will be referred to as the scalar case. All our subsequent analysis reduces to the known
results established in [Lec03] and [Lec08] for the scalar case.

In the following, we will always tacitly refer to a fixed particle spectrum given by the data
G,Q, {V1,q}q∈Q, {mq}q∈Q and complying with the above assumptions. It will be convenient
to use a particular orthonormal basis for K (2.3): For each subspace Kq of fixed charge, we
choose an orthonormal basis, and denote their direct sum by {eα : α = 1, ..., D}. We can thus
associate with each index α a definite charge q[α] and mass m[α] := m(q[α]). The corresponding
components of vectors Ψ1 ∈ H1 will be denoted by θ 7→ Ψα

1 (θ).
We will write ( · , · ) for the scalar product on K, put I := {1, ..., D}, and make use of

standard multi index notation for tensor products. For example, we write ξα := (eα1 ⊗ ... ⊗
eαn , ξ), α = (α1, ..., αn), for vectors ξ ∈ K⊗n, and Tα

β := (eα1 ⊗ ...⊗ eαn , T eβ1 ⊗ ...⊗ eβn) for

tensors T ∈ B(K⊗n), n ∈ N. Furthermore, given T ∈ B(K ⊗ K) and n ≥ 2, we will use the
shorthand notation Tn,k := 1k−1 ⊗ T ⊗ 1n−k−1, k = 1, ..., n− 1, where 1r denotes the identity
on K⊗r.

The description of the single particle structure is completed by a remark on the TCP
symmetry. In view of our above assumption regarding conjugate charges q, q ∈ Q, we have a
single particle TCP operator J1 on H1 (See for example [DHR74, BF82, GL95, Mun01]). It
is the product of a charge conjugation operator exchanging the representation spaces Kq and
Kq, and a space-time reflection, acting by complex conjugation on L2(R, dθ). When working
in the basis eα, this simply means that we have an involution α 7→ α of {1, ..., D} (that is, a
permutation of D elements with α = α) such that m[α] = m[α] and q[α] = q[α], and the TCP
operator reads

(J1Ψ1)
α(θ) := Ψα

1 (θ) . (2.6)

By straightforward calculation, one checks that J1 is an antiunitary involution which com-
mutes with V1 and extends the representation U1 to the proper Poincaré group P+, including
the space-time reflection j(x0, x1) := (−x0,−x1), by setting U1(j) := J1.

We now come to specifying the interaction of the models to be constructed. Our point of
view is that of inverse scattering theory, and since we want to study completely integrable
models, we take a factorizing S-matrix as an input to our construction. Such a collision oper-
ator is completely fixed by collision processes with two incoming and two outgoing particles,
and enjoys a number of special properties [Dor98]:

• There is no particle production.
• The S-matrix kernels for processes with n incoming and n outgoing particles are products

of kernels of (2→ 2) processes.
• The sets of incoming and outgoing momenta coincide.
• Particles of different mass do not interact.

This particular structure makes the two particle S-matrix the main object of interest in fac-
torized scattering. By Lorentz invariance, processes with incoming particles of types α, β and
rapidities θ1, θ2, and outgoing types γ, δ and rapidities θ′1, θ

′
2 are governed by an amplitude

Sαβγδ (θ) depending only on the difference of rapidities θ = θ1− θ2 = θ′1− θ′2, i.e. we can view S

as a map R→ B(K⊗K). Further constraints on S arise from general S-matrix properties like
unitarity, Poincaré invariance, TCP invariance, crossing symmetry and hermitian analyticity.
For a thorough discussion of all these standard properties, we refer to the textbook and review
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[AAR91, Mus92, Dor98]. Note that there several different conventions regarding the positions
of the indices on S are used in the literature. For example, in many places one finds the order

of the two upper indices reversed, i.e. Sβαγδ instead of Sαβγδ .

We now give an abstract definition of the class of S-matrices we will consider, using the
notation S(a, b) := {ζ ∈ C : a < Imζ < b} for strips in the complex plane.

Definition 2.1. An S-matrix (corresponding to the particle spectrum given by G,Q, {V1,q}q∈Q,

{mq}q∈Q) is a continuous bounded function S : S(0, π) → B(K ⊗ K) which is analytic in the
interior of this strip and satisfies for arbitrary θ, θ′ ∈ R, α, β, γ, δ ∈ I,

i) Unitarity:

S(θ)∗ = S(θ)−1 (2.7)

ii) Hermitian analyticity:

S(θ)−1 = S(−θ) (2.8)

iii) Yang-Baxter equation:

(S(θ)⊗ 11)(11 ⊗ S(θ + θ′))(S(θ′)⊗ 11) = (11 ⊗ S(θ′))(S(θ + θ′)⊗ 11)(11 ⊗ S(θ)) (2.9)

iv) Translational invariance2:

Sαβγδ (θ) = 0 if m[α] 6= m[δ] or m[β] 6= m[γ]. (2.10)

v) TCP invariance:

Sαβγδ (θ) = Sδγ
βα

(θ) (2.11)

vi) Gauge invariance:

[S(θ), V1(g)⊗ V1(g)] = 0 , g ∈ G, θ ∈ R . (2.12)

vii) Crossing symmetry:

Sαβγδ (iπ − θ) = Sγα
δβ

(θ) (2.13)

The family of all S-matrices will be denoted S.

In view of the required invariance properties of S, many of its components are related or
have to vanish. For example, in the case of a theory with a single mass, gauge group G = U(1),
and the two conjugate representations V1,±(eiϑ) = e±iϑ, we have D = 2 and hence S(θ) can
be viewed as a (4 × 4)-matrix. But as a consequence of gauge invariance, TCP invariance,
and crossing symmetry, only two of its 16 components are non-zero and independent. In many
articles on factorizing S-matrices, these amplitudes are taken as the main quantities of interest.
For our approach, however, it will be more convenient to consider S as a single object. We also
point out that the above conditions on S can also be formulated in a manifestly basis-invariant
manner [Bis12].

In the scalar case, conditions iii), iv), v) and vi) drop out. In particular the absence of the
Yang-Baxter equation iii) simplifies the structure significantly in that case, so that the general
form of S ∈ S can be worked out explicitly [Lec06]. For dimK > 1, the general solution of
the constraints summarized in Definition 2.1 is not known. However, many special solutions,
corresponding to model theories such as O(N) σ-models, are known and will be discussed in
Section 6.

2It will become apparent later that this is the right condition for ensuring translational invariance of S. Also
note that Lorentz invariance poses no further condition as S will only depend on differences of rapidities.
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In the following, it will not be necessary to rely on the detailed structure of particular so-
lutions to the constraints summarized in Definition 2.1. We therefore consider some arbitrary
S ∈ S, and proceed to the construction of an associated quantum field theory. As S will
be fixed in the following, we do not reflect the S-dependence of various objects introduced
subsequently in our notation.

The first step is the construction of a convenient Hilbert space. A look at the scalar case
shows that different equivalent choices are possible – compare the S-symmetric Fock space
used in [Lec08] with the usual Bose/Fermi-Fock spaces used in [Lec12, Ala12]. We will use the
S-symmetric version here. In a different context, this construction was carried out by Liguori
and Mintchev for S-matrices satisfying only conditions i)–iii) of Definition 2.1 [LM95a]. The
more particular structure of conditions iv)–vii) will enter at a later stage, in analogy to the
scalar case discussed in [Lec03]. We recall here this construction.

Starting from the single particle space (2.3), we consider the n-fold tensor products H⊗n1 =
L2(Rn, dnθ)⊗K⊗n, and introduce the operators, n ∈ N, k ∈ {1, ..., n− 1}, Ψn ∈ H⊗n1 ,

(Dn,kΨn)(θ) := S(θk+1 − θk)n,kΨn(θ1, ..., θk+1, θk, ..., θn) , (2.14)

where θ := (θ1, ..., θn). Thanks to properties i)–iii) of Definition 2.1, these operators generate a
representation of the permutation group Sn of n letters. As usual, we denote the transposition
exchanging k and k + 1 by τk ∈ Sn, and define for arbitrary i1, ..., ir ∈ {1, ..., n− 1}

Dn(τi1 · · · τir) := Dn,i1 · · ·Dn,ir . (2.15)

Lemma 2.2. [LM95a] Dn (2.15) is a unitary representation of Sn on H⊗n1 .

At this point, we do not explicitly compute the representing operators Dn(π). For a closed
formula in the scalar case K = C, see [Lec06]. We only note here that by construction of Dn,
for every π ∈ Sn there exists a unitary tensor Rn 3 θ 7→ Sπn(θ) ∈ U(K⊗n) such that

(Dn(π)Ψn)(θ) = Sπn(θ)Ψn(θπ(1), ..., θπ(n)) , Ψn ∈ H⊗n1 . (2.16)

Clearly Sτkn (θ) = S(θk+1 − θk)n,k, and for some other relevant permutations π, the tensor
Sπn(θ) will be calculated later on.

The orthogonal projection Pn ∈ B(H⊗n1 ) onto the Dn-invariant subspace will be denoted
Pn = 1

n!

∑
π∈Sn Dn(π). We now define the S-symmetrized Fock space H over H1 as

H :=

∞⊕
n=0

Hn , Hn := PnH⊗n1 , n ≥ 1 , H0 := C . (2.17)

Its elements are thus sequences Ψ = (Ψ0,Ψ1, ... ), Ψn ∈ L2(Rn, dnθ) ⊗ K⊗n, subject to the
symmetry condition (here and in the following, we will make use of the summation convention)

Ψα
n (θ) = S

αkαk+1

βkβk+1
(θk+1 − θk)Ψ

α1...αk−1βkβk+1αk+2...αn
n (θ1, ..., θk+1, θk, ..., θn) , (2.18)

and having finite norm

‖Ψ‖2 = 〈Ψ,Ψ〉 =

∞∑
n=0

∫
dnθ (Ψn(θ),Ψn(θ)) =

∞∑
n=0

∫
dnθ

∑
α

Ψα
n (θ)Ψα

n (θ) <∞ .

Occasionally we will also use the orthogonal projection P :
⊕

nH
⊗n
1 → H, the “particle

number operator” (NΨ)n := nΨn, and the dense subspace D ⊂ H of “finite particle number”.
For the time being, these are just names for certain subspaces, their physical interpretation in
terms of particle states will be justified later in scattering theory.

Next we discuss Poincaré symmetries and inner symmetries on H. On the unsymmetrized

Fock space Ĥ :=
⊕

nH
⊗n
1 , we have a natural representation Û of P↑+ by second quantization
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of (2.5), i.e.

[Û(a, λ)Ψ]αn (θ) := exp(i

n∑
l=1

pαl(θl) · a) Ψα
n (θ1 − λ, ..., θn − λ) , (2.19)

where pαl is shorthand for pm[αl]
. It is straightforward to verify that Û is a unitary strongly

continuous positive energy representation of P↑+, with up to a phase unique invariant unit

vector Ω, given by Ωn := δn,0. The representation Û can be extended to the full Poincaré
group in various ways. However, only specific operators implementing space-, time-, and
space-time-reflection restrict to the S-symmetric subspace. We will only work with the proper
Poincaré group here, and choose as an implementation of the space-time reflection j(x) := −x
the anti-unitary TCP operator Ĵ : Ĥ → Ĥ,

(ĴΨ)αn (θ) := Ψαn...α1
n (θn, ..., θ1) . (2.20)

Clearly Ĵ restricts to the single particle TCP operator (2.6) on H1 and satisfies Ĵ 2 = 1.

Making use of m[α] = m[α], it is straightforward to check that Û(j) := Ĵ extends Û to a
representation of the proper Poincaré group P+.

Also the inner symmetry group G acts naturally on Ĥ, via the unitary representation

V̂ :=
∞⊕
n=0

V ⊗n1 . (2.21)

Lemma 2.3. The representations Û of P+ and V̂ of G commute and leave the subspace H ⊂ Ĥ
invariant. Their restrictions will be denoted

U(a, λ) := Û(a, λ)|H , J := Ĵ |H , V (g) := V̂ (g)|H . (2.22)

Proof. As Û and V̂ preserve the grading of Ĥ w.r.t. the particle number, the claim about

restrictability follows once we established that Û(a, λ), Ĵ and V̂ (g) commute with the pro-
jections Pn onto the subspaces Hn ⊂ H⊗n1 invariant under the representation Dn (2.15) of
the permutation group. For the boosts (0, λ), this is clear since the S-matrix only depends
on differences of rapidities in (2.14) and the transpositions generate Sn. For the translations
(a, 0), we compute, Ψn ∈ H⊗n1 ,

([U(a, 0), Dn,k]Ψ)αn (θ) = ei
∑n
l=1 pαl (θl)a(1− ei(pβk (θk+1)−pαk+1

(θk+1))ae
i(pβk+1

(θk)−pαk (θk))a)

× Sαkαk+1

βkβk+1
(θk+1 − θk)Ψ

α1...βkβk+1...αn
n (θ1, ..., θk+1, θk, ..., θn) .

Thanks to Definition 2.1 iv), the S-matrix element vanishes unless the masses m[βk] = m[αk+1],
m[βk+1] = m[αk] coincide, which implies identical on-shell momenta pβk(θk+1) = pαk+1

(θk+1),
pβk+1

(θk) = pαk(θk) (2.1). Thus [U(a, 0), Dn,k]Ψn = 0, and since k and Ψn were arbitrary, we
conclude [U(a, 0), Pn] = 0.

The same argument shows also that V̂ (g) commutes with Û(a, λ). As J1 was built in such
a way that it commutes with V1(g) for any g ∈ G, it is clear that also J and V (g) commute.

Furthermore, each V̂ (g) restricts to H since V1(g)⊗ V1(g) commutes with S(θ).

Concerning Ĵ , we first note that written in components, the S-matrix properties i), ii) and
v) of Definition 2.1 combine to the identity

Sαβγδ (θ) = Sβα
δγ

(−θ) .



8 GANDALF LECHNER AND CHRISTIAN SCHÜTZENHOFER

With this information we compute

[Ĵ Dn,kΨn]α(θ) = [Dn,kΨn]αn...α1(θn, ..., θ1)

= S
αn−k+1 αn−k
βn−k+1 βn−k

(θn−k − θn−k+1) Ψ
αn...βn−k+1 βn−k...α1
n (θn, .., θn−k, θn−k+1, .., θ1)

= S
αn−k αn−k+1

βn−k βn−k+1
(θn−k+1 − θn−k)Ψ

αn...βn−k+1 βn−k...α1
n (θn, .., θn−k, θn−k+1, .., θ1)

= [Dn,n−kĴ Ψn]α(θ) .

This commutation relation implies that Ĵ commutes with the average Pn over Sn. �

For our purposes, the TCP operator J is an important object as it will allow us to connect
localization regions extending to left and right spacelike infinity, and incoming with outgoing
scattering states. Under further assumptions on S (see, for example, [Dor98, p. 12]), one can
also build models in which the S-matrix is invariant under the symmetries of time reflection

and parity separately. In this case, also an extension of Û to the full Poincaré group can be
restricted to H. But these more particular properties will not be relevant here.

As a prerequisite for the definition of quantum fields, we also recall the structure of cre-

ation and annihilation operators on the S-symmetric Fock space H. On Ĥ, we have the usual
unsymmetrized operators a(ϕ), a†(ϕ), ϕ ∈ H1. They are defined by linear and continuous
extension from

a†(ϕ)ψ1 ⊗ ...⊗ ψn :=
√
n+ 1ϕ⊗ ψ1 ⊗ ...⊗ ψn , ψ1, ..., ψn ∈ H1 , (2.23)

a(ϕ)ψ1 ⊗ ...⊗ ψn :=
√
n 〈ϕ,ψ1〉ψ2 ⊗ ...⊗ ψn , a(ϕ)Ω := 0 , (2.24)

to Hn, and then to the subspace of finite particle number, where they satisfy a(ϕ)∗ ⊃ a†(ϕ).
We introduce their projections onto H as

z†(ϕ) := Pa†(ϕ)P , z(ϕ) := Pa(ϕ)P , ϕ ∈ H1, (2.25)

and the distributional kernels z#α (θ) related to these operators by

z†(ϕ) =

∫
dθ ϕα(θ)z†α(θ) , z(ϕ) =

∫
dθ ϕα(θ)zα(θ) . (2.26)

Proposition 2.4. Let ϕ ∈ H1 and Ψ ∈ D be arbitrary.
i) The operators (2.25) are explicitly given by

[z(ϕ)Ψ]αn (θ) =
√
n+ 1

∫
dθ′ ϕβ(θ′)Ψβα

n+1(θ
′,θ), (2.27)

[z†(ϕ)Ψ]n(θ) =
1√
n

n∑
k=1

Sσkn (θ)(ϕ(θk)⊗Ψn−1(θ1, ..., θ̂k, ..., θn)), n ≥ 1 , (2.28)

[z†(ϕ)Ψ]0 = 0 , (2.29)

where θ̂k means that this variable is omitted, and the permutations σk ∈ Sn are defined
as σk := τk−1τk−2 · · · τ1 for k ≥ 1, and σ1 := id.

ii) We have

z(ϕ)∗ ⊃ z†(ϕ) . (2.30)

iii) For (a, λ) ∈ P↑+ and g ∈ G, we have

U(a, λ)z#(ϕ)U(a, λ)−1 = z#(U(a, λ)ϕ) ,

V (g)z#(ϕ)V (g)−1 = z#(V (g)ϕ) ,
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where z# stands for either z or z†.
iv) With respect to the particle number operator N , there hold the bounds

‖z(ϕ)Ψ‖ ≤ ‖ϕ‖‖N1/2Ψ‖, ‖z†(ϕ)Ψ‖ ≤ ‖ϕ‖‖(N + 1)1/2Ψ‖ . (2.31)

v) The distributional kernels z#α (θ) satisfy

zα(θ)zβ(θ′)− Sβαδγ (θ − θ′)zγ(θ′)zδ(θ) = 0, (2.32)

z†α(θ)z†β(θ′)− Sγδαβ(θ − θ′)z†γ(θ′)z†δ(θ) = 0, (2.33)

zα(θ)z†β(θ′)− Sαγβδ (θ′ − θ)z†γ(θ′)zδ(θ) = δαβδ(θ − θ′) · 1 . (2.34)

Proof. i) By comparison of (2.24) and (2.27), one observes that the explicit action of a(ϕ) on

the finite particle number subspace of Ĥ is given by the formula (2.27). But this action does

not disturb the symmetrization (2.18). Hence a(ϕ) leaves D ⊂ Ĥ invariant, which implies
z(ϕ)Ψ = Pa(ϕ)PΨ = a(ϕ)Ψ, Ψ ∈ D, and the claimed formula (2.27) follows.

To compute z†(ϕ), we first note that by definition of this operator, [z†(ϕ)Ψ]n =
√
nPn(ϕ⊗

Ψn−1) for n ≥ 1, and [z†(ϕ)Ψ]0 = 0. This implies in particular (2.29). Each permutation
π ∈ Sn, n ≥ 2, can be decomposed according to π = σkρ with some σk = τk−1τk−2 · · · τ1 ∈ Sn
and some ρ ∈ Sn−1 acting on {2, ..., n} ⊂ {1, ..., n}. On the level of the projection Pn, this
gives Pn = 1

n

∑n
k=1Dn(σk)(1 ⊗ Pn−1) [Lec03]. Taking into account (2.16) yields the claimed

formula (2.28).
ii)–iv) are known to hold for the unsymmetrized creation and annihilation operators a#(ϕ),

with U replaced by Û and V replaced by V̂ . Since z#(ϕ) = Pa#(ϕ)P and P is selfadjoint, ii)

follows. As Û(a, λ), V̂ (g) commute with P and equals U(a, λ), V (g) on H, we also have iii).
The fact that the norm of the orthogonal projection P is ‖P‖ = 1 implies iv).

v): These commutation of distributional kernels can be deduced from the formulas in i), cf.
also [LM95a]. For example, one sees by comparing (2.27) and (2.26) that

[zα(θ)Ψ]τn(θ̃) =
√
n+ 1Ψατ

n+1(θ, θ̃) .

Taking into account the symmetry (2.18), we thus find

[zα(θ)zβ(θ′)Ψ]τn(θ̃) =
√

(n+ 1)(n+ 2)Ψβατ
n+2(θ′, θ, θ̃)

=
√

(n+ 1)(n+ 2)Sβαδγ (θ − θ′)Ψδγτ
n+2(θ, θ

′, θ̃)

= Sβαδγ (θ − θ′) [zγ(θ′)zδ(θ)Ψ]τn(θ̃) ,

which implies (2.32). The derivation of the other two exchange relations is analogous. �

The algebraic relations in item v) are known as the Zamolodchikov–Faddeev algebra [ZZ79,
Fad84], and are frequently used in the context of integrable quantum field theories (see for ex-
ample [BFK06, Smi92], and references cited therein). Note in particular that for the constant

S-matrices Sαβγδ (θ) = ±δαδ δ
β
γ , they coincide with the familiar CCR/CAR relations.

The covariance statements in item iii) do not extend to the TCP operator J . In the next
section, we will also need the TCP-transformed creation and annihilation operators,

z†(ϕ)′ := Jz†(Jϕ)J , z(ϕ)′ := Jz(Jϕ)J . (2.35)

Taking into account that J is an antiunitary involution with JU(a, λ)J = U(−a, λ), it becomes
apparent that items ii)–iv) of Proposition 2.4 apply to the z#(ϕ)′ without any changes. The
explicit actions in i) and the exchange relations in v) are different for the z#(ϕ)′, however.
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For example, the “TCP reflected” annihilation operator acts according to

[z(ϕ)′Ψ]αn (θ) = [z(Jϕ)JΨ]αn...α1
n (θn, ..., θ1)

=
√
n+ 1

∫
dθ′ ϕβ(θ′)(JΨ)βαn...α1

n+1 (θ′, θn, ..., θ1),

=
√
n+ 1

∫
dθ′ ϕβ(θ′)Ψαβ

n+1(θ, θ
′), (2.36)

it “annihilates from the right”. Note that in the last step of the above calculation, we have
used that the charge conjugation β 7→ β is an involution.

The TCP-reflected creation/annihilation operators satisfy commutation relations analogous

to the ones listed in Proposition 2.4 v) with the only difference that Sαβγδ (θ) has to be replaced

by Sαβ
γδ

(θ) = Sβαδγ (−θ). As it will turn out, even more important than the exchange relations

of the z#(ϕ) and z#(ϕ)′ amongst each other are their relative commutation relations. They
are determined next.

Proposition 2.5. Let ϕ1, ϕ2 ∈ H1 and Ψn ∈ Hn, n ∈ N0. Then

[z(ϕ1)
′, z(ϕ2)]Ψn = 0, (2.37)

[z†(ϕ1)
′, z†(ϕ2)]Ψn = 0, (2.38)

[z(ϕ1)
′, z†(ϕ2)]Ψn = Kϕ1 ϕ2

n Ψn, (2.39)

[z†(ϕ1)
′, z(ϕ2)]Ψn = Lϕ1 ϕ2

n Ψn, (2.40)

where Kϕ1 ϕ2
n and Lϕ1 ϕ2

n are operators on Hn which act by multiplication with the tensors

Kϕ1ϕ2
n (θ)αβ = +

∫
dθ′ ϕγ1(θ′)S

σn+1

n+1 (θ, θ′)αγδβ ϕ
δ
2(θ
′) , (2.41)

Lϕ1ϕ2
n (θ)αβ = −

∫
dθ′ ϕγ1(θ′)S

σn+1

n+1 (θ, θ′)βγδαϕ
δ
2(θ
′) . (2.42)

Proof. The first commutation relation (2.37) can be computed straightforwardly on the basis
of (2.27) and (2.36): Since these annihilation operators contract the arguments of Ψn from the
left and right, respectively, they commute. As the creation operators in (2.38) are the adjoints
of the annihilation operators in (2.37), the commutation relation (2.38) follows by taking the
adjoint of (2.37).

The verification of the mixed commutation relations requires a calculation. With Ψ ∈ D,
inserting (2.36) and (2.28) yields

([z(ϕ1)
′, z†(ϕ2)]Ψ)αn (θ)

=
√
n+ 1

∫
dθn+1 ϕ

γ
1(θn+1)[z

†(ϕ2)Ψ]αγn+1(θ, θn+1)

− 1√
n

n∑
k=1

Sσkn (θ)αδβ1...βn−1
ϕδ2(θk)[z(ϕ1)

′Ψ]
β1...βn−1

n−1 (θ1, ...θ̂k, ..., θn)

=

∫
dθn+1 ϕ

γ
1(θn+1)

n+1∑
k=1

Sσkn+1(θ, θn+1)
αγ
δβ1...βn

ϕδ2(θk)Ψ
β
n(θ1, .., θ̂k, .., θn+1)

−
n∑
k=1

Sσkn (θ)αδβ1...βn−1
ϕδ2(θk)

∫
dθn+1 ϕ

βn
1 (θn+1)Ψ

β1...βn
n (θ1, ..., θ̂k, .., θn, θn+1) .

For terms corresponding to k < n+1 in the first sum, the permutation σk satisfies σk(n+1) =
n+1 and can be regarded as an element of Sn, with Sσkn+1(θ, θn+1)

αγ
δβ1...βn

= δγβnS
σk
n (θ)αδβ1...βn−1

.
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It is thus apparent that all terms with k < n+ 1 drop out in the above expression, and we are
left with the term corresponding to k = n+ 1, which equals (2.41).

To compute the last commutator (2.42), note that in view of z(ϕ)∗ ⊃ z†(ϕ) and (z(ϕ)′)∗ ⊃
z†(ϕ)′ we have

Lϕ1ϕ2
n (θ)αβΨβ

n(θ) = ([z†(ϕ1)
′, z(ϕ2)]Ψ)αn (θ) = −([z(ϕ1)

′, z†(ϕ2)]
∗Ψ)αn (θ)

= −(Kϕ1ϕ2
n (θ)∗)αβΨβ

n(θ) = −Kϕ1ϕ2
n (θ)βαΨβ

n(θ) .

Thus Lϕ1ϕ2
n (θ)αβ = −Kϕ1ϕ2

n (θ)βα, from which we read off (2.42). �

Later on, we will also need the explicit form of the components of the tensors S
σn+1

n+1 (θ, θ′).

Lemma 2.6. Let n ∈ N and k ∈ {1, ..., n}. Then

Sσkn (θ)αβ =
∑

ξ1,...,ξk

δαkξk δ
β1
ξ1

k−1∏
l=1

S
αlξl+1

ξlβl+1
(θk − θl) · δ

αk+1

βk+1
· · · δαnβn . (2.43)

Proof. We will proceed by induction in k. For k = 1, we have σ1 = id, implying Dn(σ1) = 1
and thus Sσ1n (θ) = 1n. This is reproduced by (2.43):

Sσ1n (θ)αβ =
∑
ξ1

δα1
ξ1
δβ1ξ1 · δ

α2
β2
· · · δαnβn = δα1

β1
· · · δαnβn = (1n)αβ .

For the induction step k → k + 1, we take into account σk+1 = τkσk and calculate, Ψn ∈ Hn,
writing θa,b := θa − θb as a shorthand notation,

[Dn(σk+1)Ψn]α(θ) = S
αkαk+1

εβk+1
(θk+1,k)[Dn(σk)Ψn]α1...αk−1εβk+1...αn(θ1, ..., θk+1, θk, ..., θn)

= S
αkαk+1

εβk+1
(θk+1,k)

∑
ξ1,...,ξk

δεξkδ
β1
ξ1

k−1∏
l=1

S
αlξl+1

ξlβl+1
(θk+1,l)Ψ

β1...βk+1αk+2..αn
n (θk+1, θ1, .., θ̂k+1, .., θn)

=
∑

ξ1,...,ξk

δ
αk+1

ξk+1
δβ1ξ1 S

αkξk+1

ξkβk+1
(θk+1,k)

k−1∏
l=1

S
αlξl+1

ξlβl+1
(θk+1,l)Ψ

β1...βk+1αk+2..αn
n (θk+1, θ1, .., θ̂k+1, .., θn).

The last line coincides with S
σk+1
n (θ)αβΨβ

n(θk+1, θ1, .., θ̂k+1, .., θn) when S
σk+1
n (θ)αβ is given by

(2.43). As the tensors Sπn(θ) were defined by this equation (2.16), the proof is finished. �

For later reference, we note here that with the above result, we have found in particular an
explicit form of the integral kernel appearing in (2.41) and (2.42), namely

S
σn+1

n+1 (θ, θ′)αγδβ =
∑

ξ1,...,ξn+1

δγξn+1
δδξ1

n∏
l=1

S
αlξl+1

ξlβl
(θ′ − θl) . (2.44)

3. Multi-component wedge-local fields

We now turn to the definition of two quantum fields φ, φ′ on two-dimensional Minkowski
space which are auxiliary but important objects in our construction. As before, we will assume
a fixed S-matrix S ∈ S and suppress all dependence on S in our notation.

Similar to the single particle space H1 = L2(R, dθ) ⊗ K, we will deal with test functions
f ∈ S (R2) ⊗ K having several components x 7→ fα(x) := (eα, f(x)). Their rapidity space
wave functions are defined as

f±α (θ) := f̃α(±pα(θ)) =
1

2π

∫
d2x fα(x) e±ipα(θ)·x . (3.1)
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As before, pα(θ) = m[α](cosh θ, sinh θ) denotes the momentum on the mass shell with mass

m[α]. Clearly, f±α ∈ L2(R, dθ) for fα ∈ S (R2), and so we may consider f± as vectors in H1.

Obviously the maps S (R2)⊗ K 3 f 7→ f± ∈ H1 are linear, and it is not difficult to see that
they are continuous as well.

On S (R2) ⊗ K, we have a natural action of the proper orthochronous Poincaré group by

pullback, f 7→ (a, λ) B f := f ◦ (a, λ)−1, (a, λ) ∈ P↑+. Here (a, λ)x := Λλx + a, where Λλ
denotes the Lorentz boost matrix with rapidity λ. This action extends to the proper Poincaré
group by implementing spacetime reflection j(x) := −x as the TCP type map

(j B f)α(x) := fα(−x) .

Taking into account m[α] = m[α], it is straightforward to check with these definitions that

f 7→ f+ and f 7→ Jf− are covariant in the sense that

(g B f)+ = U(g)f+ , J(g B f)− = U(g)Jf− , g ∈ P+. (3.2)

The fields we are interested in are defined as, f ∈ S (R2)⊗K,

φ(f) := z†(f+) + z(Jf−) , (3.3)

φ′(f) := z†(f+)′ + z(Jf−)′ . (3.4)

Proposition 3.1. Let f ∈ S (R2)⊗K and Ψ ∈ D.
i) S (R2)⊗K 3 f 7→ φ(f)Ψ is linear and continuous.

ii) φ(f)∗ ⊃ φ(f∗) with (f∗)α(x) := fα(x).
iii) All vectors in D are entire analytic for φ(f). For f = f∗ ∈ S (R2)⊗K, the field operator

φ(f) is essentially selfadjoint.

iv) φ transforms covariantly under P↑+, i.e.,

φ((a, λ)B f)Ψ = U(a, λ)φ(f)U(a, λ)−1Ψ , (a, λ) ∈ P↑+. (3.5)

v) φ(j B f) = Jφ′(f)J .
vi) The vacuum vector Ω is cyclic for the field φ, i.e. for any open set O ⊂ R2, the subspace

DO := span{φ(f1) · · ·φ(fn)Ω : f1, ..., fn ∈ S (O)⊗K, n ∈ N0}
is dense in H.

vii) For g ∈ G, f ∈ S (R2)⊗K, let (V1(g)f)(x) := V1(g)f(x). Then

V (g)φ(f)V (g)−1 = φ(V1(g)f) . (3.6)

viii) φ is local if and only if Sαβγδ (θ) = δαδ δ
β
γ .

All these statements also hold if φ is replaced by φ′ (and φ′ by φ in item v)).

Proof. i) As z† is linear, whereas z and J are antilinear, the linearity of φ is clear. The
continuity of f 7→ φ(f)Ψ follows from the continuity of S (R2)⊗K 3 f 7→ Jf± ∈ H1 and the
continuity of H1 3 ξ 7→ z#(ξ)Ψ ∈ H (Prop. 2.4 iv)).

ii) By definition of f∗, there holds (f∗)± = Jf∓. In view of Prop. 2.4 ii), we have

φ(f)∗Ψ = z(f+)Ψ + z†(Jf−)Ψ = z(J(f∗)−)Ψ + z†((f∗)+)Ψ = φ(f∗)Ψ .

iii) This argument is identical to the scalar case, see [Lec03, Prop. 1(2)]. iv) follows at once
from the above mentioned covariance of f 7→ f+, f 7→ Jf−, and the covariance of the z#

expressed in Prop. 2.4 iii). For v), we compute

φ(j B f)Ψ = (z†(Jf+) + z(JJf−))Ψ = (Jz†(f+)′J + Jz(Jf−)′J)Ψ = Jφ′(f)JΨ .

vi) By standard analyticity arguments making use of the fact that U is a positive energy
representation of P+, it follows that DO ⊂ H is dense if and only if DR2 ⊂ H is dense. Now
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for any scalar test function f0 ∈ S (R2) with supp f̃0 contained in the forward light cone, and
any α0 ∈ I, the function f := f0 ⊗ eα0 ∈ S (R2) ⊗ K satisfies f+α = δαα0 · f+α0

and f−α = 0,

α ∈ I. Thus φ(f) = z†(f+). Furthermore, as f0 and α0 vary within the above limitations,
the space spanned by all corresponding f+ is dense in H1. Since the creation operators z†

generate the S-symmetric Fock space, this implies that DR2 ⊂ H is dense.
vii) This follows from Proposition 2.4 iii) and the fact that V (g) and J commute.

viii) In case the S-matrix is Sαβγδ (θ) = δαδ δ
β
γ , the S-symmetric Fock space is just the com-

pletely symmetric Bose Fock space over H1, as can be read off from (2.18). It is clear from
our construction that in this case, φ is the free field, which is known to be local. To show
that this form of S is also necessary for locality, we consider the two-particle contribution of
the field commutator on the vacuum. With f ∈ S (O1) ⊗ K, g ∈ S (O2) ⊗ K with space-
like separated open regions O1, O2 ⊂ R2, we have [[φ(f), φ(g)]Ω]2 = [z†(f+), z†(g+)]Ω =√

2P2(f
+ ⊗ g+ − g+ ⊗ f+). According to part vi), f+ and g+ span dense subspaces of H1 as

f, g vary within S (O1) ⊗ K and S (O2) ⊗ K, respectively. Hence for any f, g ∈ S (R2) ⊗ K,
and any α, β ∈ I, we must have

0 =
√

2[[φ(f), φ(g)]Ω]αβ2 (θ1, θ2)

= f+α (θ1)g
+
β (θ2) + Sαβγδ (θ2 − θ1)f+γ (θ2)g

+
δ (θ1)− g+α (θ1)f

+
β (θ2)− Sαβγδ (θ2 − θ1)g+γ (θ2)f

+
δ (θ1),

which is fulfilled only if Sαβγδ (θ) = δαδ δ
β
γ .

The proofs of all these statements for φ′ are completely analogous. �

Despite not being point-localized Wightman fields, the fields φ, φ′ satisfy interesting relative
commutation relations which make them useful tools in our construction. Namely, as in the
scalar case, it can be shown that these fields are relatively wedge-local. For a precise formulation
of this property, first recall that the right wedge is the region

WR := {x ∈ R2 : x1 > |x0|} , (3.7)

and the set of all wedges W is the orbit of WR under the natural action of P+ on R2. As WR

is invariant under boosts, it consists of all translates of WR and the left wedge WL := jWR =
−WR, which coincides with the causal complement W ′R of WR.

The field operators φ′(f), φ(g) are localized in wedges in the following sense. The assign-
ment of φ′(f) to the localization region (WR + supp f)′′ (the smallest right wedge containing
supp f , where supp f is defined as the smallest subset of R2 containing supp fα for all α ∈ I),
and of φ(g) to the localization region (WL + supp g)′′, is consistent with the principles of
Poincaré covariance and Einstein causality. The covariance properties have been established
in Proposition 3.1 iv) and v). But it remains to prove the locality property, i.e. to check
that field operators localized in spacelike separated wedges commute. For this to hold, the
analyticity properties of the S-matrix, and in particular its crossing symmetry (Def. 2.1 vii)),
turn out to be crucial.

Theorem 3.2. The fields φ and φ′ are relatively wedge-local: For any a ∈ R2, f ∈ S (WR +
a)⊗K, g ∈ S (WL + a)⊗K, and Ψ ∈ D, we have

[φ′(f), φ(g)]Ψ = 0 . (3.8)

Proof. In view of the translational covariance of φ and φ′, and the invariance of D under
translations, it is sufficient to consider the case a = 0. Taking also into account the strong
continuity of f 7→ φ′(f) and g 7→ φ(g) on D, we may furthermore restrict to compactly
supported smooth f and g.
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With the help of Proposition 2.5, we first simplify the field commutator on a vector Ψn ∈ Hn
of definite particle number n ∈ N0 to

[φ′(f), φ(g)]Ψn = [z†(f+)′ + z(Jf−)′, z†(g+) + z(Jg−)]Ψn

= [z†(f+)′, z(Jg−)]Ψn + [z(Jf−)′, z†(g+)]Ψn

= (Lf
+,Jg−
n +KJf−,g+

n )Ψn ,

where Lf
+,Jg−
n and KJf−,g+

n act by multiplication with the tensors (2.41) and (2.42). Recalling

the form (2.44) of their components, and (Jf−)γ(θ′) = f−γ (θ′), it becomes apparent that for

proving [φ′(f), φ(g)]Ψn = 0 we have to show that

KJf−,g+
n (θ)αβ =

∫
dθ′ f−γ (θ′)

∑
ξ1,...,ξn+1

δγξn+1
δδξ1

n∏
l=1

S
αlξl+1

ξlβl
(θ′ − θl) · g+δ (θ′) (3.9)

coincides with

−Lf+,Jg−n (θ)αβ =

∫
dθ′ f+γ (θ′)

∑
ξ1,...,ξn+1

δγξn+1
δδξ1

n∏
l=1

S
βlξl+1

ξlαl
(θ′ − θl) · g−δ (θ′) (3.10)

for all θ ∈ Rn, α,β ∈ In. We first make some comments about analyticity properties of
the various functions appearing in these integrals. In view of the compact support of f, g,
for arbitrary γ, δ ∈ I, the functions θ′ 7→ f−γ (θ′) and θ′ 7→ g+δ (θ′) continue to entire analytic

functions. We also recall from [Lec03] that because the supports of f, g are restricted to
wedges, these continuations are bounded on the strip S(0, π), and f−γ (θ′ + iµ) and g+δ (θ′ + iµ)

decay rapidly to zero as θ′ → ±∞, uniformly in µ ∈ [0, π]. Finally, the boundary values at the
upper end of the strip are given by f−γ (θ′ + iπ) = f+γ (θ′) and g+δ (θ′ + iπ) = g−δ (θ′), as can be

seen from (3.1).
According to Definition 2.1, also S has a bounded analytic continuation to S(0, π), with

crossing symmetric boundary value Sαβγδ (iπ − θ) = Sγα
δβ

(θ). We may thus shift the contour of

integration in (3.9) from R to R+ iπ, where it reads

KJf−,g+
n (θ)αβ =

∫
dθ′ f+γ (θ′)

∑
ξ1,...,ξn+1

δγξn+1
δδξ1

n∏
l=1

Sξlαl
βlξl+1

(θl − θ′) · g−δ (θ′)

=

∫
dθ′ f+γ (θ′)

∑
ξ1,...,ξn+1

δγ
ξn+1

δδ
ξ1

n∏
l=1

Sξlαlβlξl+1
(θl − θ′) · g−δ (θ′) .

But since S(−θ) = S(θ)∗, we have Sξlαlβlξl+1
(θl − θ′) = S

βlξl+1

ξlαl
(θ′ − θl), which proves that the

above integral coincides with (3.10). As n was arbitrary, (3.8) follows. �

The crossing property lying at the basis of this theorem provides a close link between
particles and fields [Sch10]. Its importance for the wedge-locality of associated fields was
known before in the scalar case [Sch99, Lec03], and by the results presented here, one sees that
this links also persists in the presence of more realistic particle spectra, involving antiparticles
and charge conjugation.

By construction, the fields φ, φ′ generate only single particle states from the vacuum and
are solutions of the Klein-Gordon equation: If fα = 0 for all α ∈ I except some index
α = α0, the field φ(f) solves the Klein-Gordon equation with mass mα0 . In addition, these
fields are localized in wedges and behave in a continuous and bounded manner under Poincaré
transformations. Thus they are examples of so-called temperate polarization-free generators
[SW00, BBS01].
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4. Operator-algebraic formulation and local fields

So far our construction proceeded from a given S-matrix S ∈ S to a vacuum Hilbert space H
and a pair φ, φ′ of Poincaré covariant wedge-local fields acting on H. Whereas these operators
are convenient and useful objects for constructing the model with S-matrix S, they must not be
confused with potentially existing point-like localized quantum fields obeying the equation of
motion of the dynamics corresponding to S. These local interacting fields, generically denoted
ϕ here, are bound to be much more involved objects whose properties are usually studied
by methods like perturbation theory, form factor expansions, or Euclidean methods. In the
approach presented here, all fields/observables with sharper than wedge-like localization are
derived quantities which will be characterized in terms of the auxiliary fields φ, φ′. For this,
it will be advantageous to formulate our models in an operator-algebraic fashion. As the
steps necessary for this reformulation are almost identical to the scalar case, which is well
documented in the literature [Lec03, BL04, Lec06], we can be brief here.

One first proceeds from the field operators φ, φ′ to the von Neumann algebras they generate,
and introduces, x ∈ R2,

F(WL + x) := {eiφ(f) : f = f∗ ∈ S (WL + x)⊗K}′′ , (4.1)

F(WR + x) := {eiφ′(f) : f = f∗ ∈ S (WR + x)⊗K}′′ . (4.2)

Here the (double) prime denotes the (double) commutant in B(H), i.e. to any wedge W ∈ W
we associate a von Neumann algebra F(W ) ⊂ B(H) generated by the unitaries exp iφ(′)(f),
f = f∗ ∈ S (W ) ⊗ K. The basic properties of these algebras are collected in the following
proposition.

Proposition 4.1. Let S ∈ S. The above defined algebras F(W ), W ∈ W, have the following

properties, W, W̃ ∈ W.
i) Isotony: F(W ) ⊂ F(W̃ ) for W ⊂ W̃ ,

ii) Covariance: U(x, λ)F(W )U(x, λ)−1 = F(ΛλW + x), (x, λ) ∈ P+,
iii) Gauge symmetry: V (g)F(W )V (g)−1 = F(W ), g ∈ G.

iv) Locality: F(W ) ⊂ F(W̃ )′ for W ⊂ W̃ ′,
v) Cyclicity: The vacuum vector Ω is cyclic and separating for F(W ).

The proofs of these facts require only trivial changes in the existing proofs for the scalar
case, so that we can content ourselves with a few comments: i) and ii) are straightforward
consequences of the definition of F(W ) and Proposition 3.1 iv). The gauge symmetry iii)
holds because of the transformation law Proposition 3.1 vii) for φ and φ′. To show iv), one has
to check that the field commutation relations of Theorem 3.2 hold also in the stronger sense
that the associated unitary groups commute,

[eiφ
′(f), eiφ(g)] = 0 , f = f∗ ∈ S (WR)⊗K, g = g∗ ∈ S (WL)⊗K . (4.3)

This can be done by a calculation on analytic vectors, as in the free field case ([RS75], see also
[Lec12, Prop. 5.1]). Actually, wedge duality holds, a property stronger than locality: For each
W ∈ W, one has

F(W )′ = F(W ′) .

The cyclicity statement in v) is a consequence of Proposition 3.1 vi), and thanks to locality,
this implies that Ω is separating for each F(W ) as well.

As mentioned in the previous section, the unbounded field operators φ(f) and φ′(f) play
the role of polarization-free generators in this context, and are affiliated to the field algebras
F((WL + supp f)′′) and F((WR + supp f)′′) respectively. In particular, by choosing f to have
non-zero components only in the representation space Kq of the irreducible representation
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V1,q of charge q, we obtain field operators which are localized in wedges (equal to spacelike
cones in two dimensions) and interpolate between the vacuum and the single particle states
in the sector q. These results fit well into the model-independent framework of Buchholz and
Fredenhagen [BF82].

In the context of such a system of field algebras associated with wedge regions, one can
unambiguously define the maximal algebras of fields F(O) localized in smaller spacetime re-
gions O ⊂ R2 as follows [Bor92, BL04]: For a double cone, that is a region of the form
Oxy := (WL + x) ∩ (WR + y), x− y ∈WR, one puts

F(Oxy) := F(WL + x) ∩ F(WR + y) . (4.4)

Algebras associated with arbitrary regions O ⊂ R2 can then be defined by additivity. This
construction results in a local net O 7→ F(O) of von Neumann algebras F(O) ⊂ B(H) indexed
by the family of all subsets O ⊂ R2, and it can be readily checked that this net inherits the basic
features isotony, Poincaré covariance, gauge invariance and locality from the corresponding
properties of the wedge algebras (Proposition 4.1 i)–iv)).

The algebras F(O), where O is a bounded localization region, can be thought of as being
generated by (bounded functions of) local quantum fields ϕ underlying the model, smeared
with test functions having support in O. In the approach followed here, these local fields
are not constructed explicitly3, but rather characterized indirectly as elements of the algebra
intersections (4.4). It is therefore not clear if such local operators exist at all, or if the model
is trivial in the sense that F(O) consists only of multiples of the identity for bounded regions
O. At least three different scenarios regarding the “size” of the local field algebra F(O), where
O is bounded, are conceivable:

1) F(O) has the vacuum Ω as a cyclic vector and is in particular non-trivial.
2) F(O) is non-trivial, but does not have the vacuum Ω as a cyclic vector.
3) F(O) is trivial, i.e. F(O) = C · 1.

Scenario 1) describes the situation encountered in a local quantum field theory with localizable
charges [DHR71, DHR74], whereas Scenario 2) occurs in local theories with gauge charges
[BF82]. In this case, one would expect that the observable algebras A(O), i.e. the gauge
invariant subalgebras of F(O), have the vacuum as a cyclic vector on the charge zero subspace.
Scenario 3) however does not occur in any local field theory, as it implies that this theory does
not have any observables localized in O, and should thus be considered a pathology.

For particular choices of S, like the S-matrices corresponding to the O(N) σ-models dis-
cussed in Section 6, compelling evidence exists from other approaches (perturbation theory,
large N limits, Euclidean methods, lattice constructions) to the effect that local quantum
fields do exist, and hence these models do not belong to Scenario 3). Rigorous proofs are
however usually difficult to obtain, and in the present generality, it seems well possible to also
build pathological S-matrices which can not be associated with a local theory. Therefore the
question arises for which S ∈ S there exists a local quantum field theory with the S-matrix
given by S as its scattering operator.

The question whether the local algebras (4.4) are non-trivial is precisely the question if
there exists a local quantum field theory with the S-matrix given by S as its scattering op-
erator. After this existence question has been settled, one could look into extending the
model-independent analysis of Bostelmann [Bos05] to models in two dimensions, and possibly
also construct such associated local field operators more explicitly.

Fortunately, a clear-cut sufficient criterion for Scenario 1) exists in the operator-algebraic
framework of quantum field theory4. This method, known as the modular nuclearity condition,

3See however [BC13] for recent progress in this direction.
4For the gauge-invariant subalgebras on the charge zero space, it can also be applied in Scenario 2).
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involves the modular operator ∆ of (F(WR),Ω), which exists since Ω is cyclic and separating
for F(WR) [Tak03], and the maps, x ∈WR,

Ξ(x) : F(WR)→ H , Ξ(x)(F ) := ∆1/4U(x)FΩ . (4.5)

Using modular theory, it is not difficult to see that Ξ(x) is bounded as a map between the
Banach spaces (F(WR), ‖ · ‖B(H)) and H. In analyzing the size of the intersection (4.4), it is
a crucial question if Ξ(x) is nuclear, too, i.e. if it can be decomposed into a series of rank
one maps with summable norms. Building on earlier investigations of nuclearity properties
[BW86, BDL90] and the closely related split property [DL84, Müg98], the following two results
have been established in [BL04] and [Lec08], respectively.

Theorem 4.2. Assume that the Ξ(x) are nuclear for x ∈WR. Then, for any double cone O,
i) F(O) is isomorphic to the hyperfinite type III1 factor.

ii) The vacuum vector Ω is cyclic for O.

For further consequences of the nuclearity condition, see [Müg98, Lec08].
Stated informally, this theorem says that in case the Ξ(x) are nuclear, local operators exist

in abundance, as expected in a well-behaved local quantum field theory. Moreover, they can
be used to construct scattering states, since in particular local operators interpolating between
the vacuum and the single particle space (with definite charge) exist. These matters will be
discussed in the next section.

Verifying the modular nuclearity condition is thus a possible strategy for proving the exis-
tence of a local quantum field theory with the considered S-matrix without having to deal with
the explicit construction of local interacting field operators. Despite its abstract formulation,
this condition takes a rather concrete form in the models at hand. Namely, the modular op-
erator ∆ appearing in (4.5) acts as a (imaginary) boost transformation. This fact was proven
for the scalar case in [BL04], and can be generally expected from the Bisognano-Wichmann
theorem [BW76, Mun01]. Concretely, we have

∆it = U(0,−2πt) , t ∈ R . (4.6)

Again we refrain from giving a formal proof and only indicate the necessary argument. One
basically proceeds as in [BL04, Prop. 3.1], with the only difference that the Poincaré group
does not act irreducibly on the single particle space here because of the richer particle spectrum
considered. But the “correct” action of the modular group on the single particle space can be
explicitly computed because the fields φ, φ′ generate single particle states from the vacuum,
and these are identical to the ones in free field theory as the S-matrix does not enter on the
single particle level.

In view of this geometric form of the modular operator, the ∆1/4 in (4.5) corresponds to an
imaginary boost by iπ

2 in the center of mass rapidity. In terms of analytic continuation, that
means

(Ξ(x)(F ))αn (θ) = (U(x)FΩ)αn (θ1 − iπ
2 , ..., θn −

iπ
2 )

=

n∏
k=1

emαk (x0 sinh θk−x1 cosh θk) · (FΩ)αn (θ1 − iπ
2 , ..., θn −

iπ
2 ) .

Nuclearity estimates of the map Ξ(x) can now be established by showing that the space of
the functions (Ξ(x)(F ))n is “small” in a specific sense. Two ingredients have to be taken into

account here: First, the rapidly decreasing factors emαk (x0 sinh θk−x1 cosh θk) (rapidly decreasing
in θk because x ∈ WR and mαk > 0), and second, analytic properties of the functions (FΩ)n,
F ∈ F(WR). These momentum space analyticity properties derive on the one hand from the
spacetime localization of F in the wedge WR, and on the other hand from analyticity properties
of the S-matrix which enters via the symmetry properties of (FΩ)n. For scalar S-matrices,
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this analysis has been carried out in [Lec08], and a proof of the modular nuclearity condition
for a class of so-called regular (scalar) S-matrices has been given.

In the case of general S-matrices, the multi-component nature of the n-particle functions
(FΩ)n ∈ L2(Rn, dθ) ⊗ K⊗n requires a somewhat more involved analysis. However, the indi-
cated strategy seems to be applicable also here and looks promising in principle [Ala13]. We
will not enter the discussion of the modular nuclearity condition in the present article in detail,
but rather present some evidence towards its validity in the context of specific S-matrices in
Section 6.

5. Scattering states and reconstruction of the S-matrix

Up to now, the underlying S-matrix entered our construction via the symmetrization prop-
erties of the vacuum Hilbert space, and the commutation relations of the creation/annihilation
operators on this space. In this section, we will explain the physical significance of S by es-
tablishing its close connection to the scattering operator of the constructed model.

We will thus be concerned with the calculation of scattering states, and employ the usual
methods of Haag-Ruelle-Hepp scattering theory [Ara99, Hep65], taking into account the wedge-
locality of the fields as in [BBS01] and the charge structure as in [DHR74]. It is a basic
prerequisite for the construction of multi particle scattering states that quasilocal operators
interpolating between the vacuum and the single particle space exist, and we will therefore
require throughout this section — somewhat stronger than necessary — that the vacuum
vector Ω is cyclic for the field algebra F(O) of some double cone O, i.e. that Scenario 1) of
the previous section applies. As explained there, this assumption is in particular satisfied if
the maps Ξ(x) (4.5) are nuclear.

It is well known that in case the vacuum is cyclic for some field algebra F(O), this algebra
also contains field operators Fq of definite charge q ∈ Q [DHR69]. In particular, picking a test

function h ∈ S (R2) such that supp h̃ intersects the energy momentum spectrum in the sector
q only in H+

m(q) — recall that according to our assumptions, there exists precisely one isolated

mass shell in this sector5 — the quasi-local operator Fq(h) =
∫
dxh(x)U(x, 0)FqU(x, 0)−1

creates a single particle state of charge q from the vacuum, that is, Fq(h)Ω ∈ H1,q.
We also introduce the velocity support of mass m of a function h ∈ S (R2) as

Vm(h) := {(1, p1(p21 +m2)−1/2) : (p0, p1) ∈ supp h̃} , (5.1)

and for vectors Ψ1,q ∈ H1,q, the velocity support V(Ψ1,q) is defined as the same set, with

mass m = m(q) and the energy momentum spectral support of Ψ1,q instead of supp h̃. It
is a consequence of the cyclicity of Ω for F(O) that there exist sufficiently many quasi local
creation operators: Given Ψ1,q ∈ H1,q and ε > 0, we find F ∈ F(O) and h ∈ S (R2),
with h having velocity support in an arbitrarily small neighborhood of V(Ψ1,q), such that
‖Fq(h)Ω−Ψ1,q‖ < ε.

These quasi-local creation operators are related to the asymptotic creation operators as
follows. For h ∈ S (R2), we define ht,m ∈ S (R2), t ∈ R, m > 0, by

h̃t,m(p) := ei(p0−(p
2
1+m

2)1/2) t · h̃(p) , (5.2)

so that the t-dependence of this function drops out on the mass shell H+
m. That is, h+t,m = h+

and Fq(ht,m(q))Ω is a vector in H1,q independent of t. Recall the support properties of ht,m for
t→ ±∞ [Hep65]: Given any ε-neighborhood Vεm(h) of Vm(h), there exists a Schwartz function

ĥ with support in tVεm(h), such that for any N , we have |t|N (ĥt,m−ht,m)→ 0 in the topology
of S (R2) as t→ ±∞.

5In the case of embedded mass eigenvalues, one would need to employ the methods of [Dyb05] to calculate
scattering states.
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The basic statement of Haag-Ruelle scattering theory then is [Ara99, DHR74, BF82] that
given field operators F1, ..., Fn ∈ F(O), charges q1, ..., qn ∈ Q, testfunctions h1, ..., hn with
disjoint velocity supports Vm(q1)(h1), ...,Vm(qn)(hn), the limits

lim
t→±∞

F1,q1(h1,t,m(q1)) · · ·Fn,qn(hn,t,m(qn))Ω =: (ψ1 × ...× ψn)out/in (5.3)

exist and and only depend on the single particle vectors ψk := Fk,qk(hk)Ω. Furthermore, the
dependence of (ψ1 × ...× ψn)out/in on the ψk is linear and continuous.

Because our auxiliary fields φ, φ′ are only wedge-local, we will need a somewhat refined
analysis, similar to the arguments presented in [BF82, BBS01, Lec08]. As in [BBS01], we
write h ≺m h′ for two testfunctions h, h′ ∈ S (R2) with velocity supports ordered such that
Vm(h′)− Vm(h) ⊂ {0} ×R+.

All these notations will also be used for multi component single particle functions of fixed
charge and mass. Test functions f ∈ S (R2) ⊗ K =

⊕
q∈QS (R2) ⊗ Kq will be decomposed

according to f =
⊕

q fq, and we write fq,t to denote the function with t-dependence of every

component as in (5.2) and mass m = m(q). The velocity support V(fq) will be understood as
the union of the velocity supports (with mass m(q)) of all the components of fq.

Having recalled these facts, we come to the calculation of scattering states in the models at
hand.

Proposition 5.1. Let f1, ..., fn ∈ S (R2)⊗K be test functions with supp f̃k contained in the
forward light cone, and ordered velocity supports, f1 ≺ ... ≺ fn. Then(

f+1 × ...× f
+
n

)
out

= φ(f1) · · ·φ(fn)Ω =
√
n!Pn(f+1 ⊗ ...⊗ f

+
n ) , (5.4)(

f+1 × ...× f
+
n

)
in

= φ(fn) · · ·φ(f1)Ω =
√
n!Pn(f+n ⊗ ...⊗ f+1 ) . (5.5)

Proof. The proof follows closely the one of Lemma 6.1 in [Lec08] and proceeds by induction
in n. We first consider n = 1 and pick some charge q ∈ Q. Then φ(f1,q)Ω = f+1,q ∈ H1,q and

f+1,q = (f+1,q)in = (f+1,q)out. Summing over q ∈ Q, we find φ(f1)Ω = f+1 = (f+1 )out/in.
For the induction step n→ n+1, we only consider the limit t→∞; the case t→ −∞ is anal-

ogous. Fix charges q, q1, ..., qn, and test functions f, f1, ..., fn ∈ S (R2)⊗K with compact sup-
ports in momentum space around points on the mass shells with masses m(q),m(q1), ...,m(qn)
such that f ≺ f1 ≺ ... ≺ fn. In a first step, given ε > 0 we find field operators F1, ..., Fn ∈ F(O)
such that ‖ψk − f+k,qk‖ < ε, where ψk := Fk,qk(hk)Ω ∈ H1,qk .

Note that the operators Gk,t := Fk,qk(ĥk,t,m(qk)) satisfy G1,t · · ·Gn,tΩ → (ψ1 × ... × ψn)out
as t → ∞. This is the case because F1,q1(h1,t,m(q1)) · · ·Fn,qn(hn,t,m(qn))Ω → (ψ1 × ... × ψn)out

and ĥk,t,m(qk) − hk,t,m(qk) → 0 rapidly in the topology of S (R2), whereas ‖hk,t,m(qk)‖1 is
polynomially bounded in t.

The operators Gk,t are localized in O + tVm(qk)(hk), and the field φ(f̂t,q) is localized in
WL + tVm(q)(fq). Because of the ordering f ≺ f1 ≺ ... ≺ fn, these two regions are spacelike

separated for sufficiently large t, and the Gk,t commute with φ(f̂t,q) on scattering states.
To establish the claim, we now pick an arbitrary vector Ψ ∈ D and note that the field

operator φ(fq) satisfies limt→∞ φ(f̂t,q)
∗Ψ = φ(fq)

∗Ψ; again because f̂t,q− ft,q → 0 in S (R2)⊗
Kq, and φ(ft,q)

∗Ψ is independent of t. Thus we can compute

〈φ(fq)
∗Ψ, (ψ1 × ...× ψn)out〉 = lim

t→∞
〈φ(f̂t,q)

∗Ψ, G1,t · · ·Gn,tΩ〉

= lim
t→∞
〈Ψ, G1,t · · ·Gn,tφ(f̂t,q)Ω〉

= lim
t→∞
〈Ψ, G1,t · · ·Gn,tf+q 〉

= 〈Ψ, (ψ1 × ...× ψn × f+q )out〉 ,
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where in the last step, we used the convergence of the Gk,t to the asymptotic creation operators.
Taking into account that D ⊂ H is dense, and the Bose symmetry of the scattering states, we
arrive at

φ(fq)(ψ1 × ...× ψn)out = (f+q × ψ1 × ...× ψn)out .

Proceeding from the ψk to the f+k,qk , we find in view of the continuous dependence of multi-

particle scattering states on their single particle components, and the induction hypothesis

φ(fq)φ(f1,q1) · · ·φ(fn,qn)Ω = φ(fq)(f
+
1,q1
× ...× f+n,qn)out = (f+q × f+1,q1 × ...× f

+
n,qn)out .

Taking linear combinations over q, qk gives the claimed result. The second equation in (5.4)
holds by definition of φ and the fact that only the creation parts of the fields contribute to
this vector because of f−k = 0, k = 1, . . . , n. �

Proposition 5.2. The sets of incoming and outgoing n-particle collision states constructed in
Proposition 5.1 are total sets in Hn, i.e., the model is asymptotically complete.

Proof. When f ∈ S (R2) varies over all functions whose Fourier transforms have compact
support within the forward light cone, f+ ranges over a dense set in H1. So the statement
is true for n = 1. For higher n, the ordering f1 ≺ ... ≺ fn has to be taken into account.
As the asymptotic states (5.4) depend only on the mass shell restrictions of the f1, ..., fn,
we can change these functions off the mass shell in such a way that Vm(fk) = {(1, p1(p21 +

m2)−1/2) : (p0, p1) ∈ supp f̃k∩H+
m}, without changing the scattering states. Parametrizing the

mass shell H+
m by the rapidity according to pm(θ) = (mchθ,mshθ) then shows Vm[α]

(fk,α) =

{(1, tanh θ) : θ ∈ supp f+k,α}. But tanh is a strictly monotonously increasing function, and

thus f1 ≺ f2 is equivalent to supp f+2 − supp f+1 ⊂ R+. Hence the f+1 ⊗ ... ⊗ f+n span a
dense set in L2(En) ⊗ K⊗n, where En := {( te1, ..., θn) ∈ Rn : θ1 ≤ ... ≤ θn}. But when
L2(En)⊗K⊗n ⊂ L2(Rn)⊗K⊗n is considered as a subspace by continuing the functions on En
by zero toRn, the S-symmetrization projection Pn : L2(En)⊗K⊗n → Pn(L2(Rn)⊗K⊗n) = Hn
is a continuous map and onto. This shows that the n-particle collision states form a dense set
in the n-particle space, and since n was arbitrary, asymptotic completeness follows. �

Having determined the form of the collision states, we will now compute the S-matrix S,
considered as an operator on the totally symmetrized Bose Fock space H+ =

⊕∞
n=0H+

n over
H1. According to our above construction of scattering states, the Møller operators Win/out :

H+ → H have the form

WoutP
+
n (f+1 ⊗ ...⊗ f

+
n ) = Pn(f+1 ⊗ ...⊗ f

+
n ) , (5.6)

WinP
+
n (f+n ⊗ ...⊗ f+1 ) = Pn(f+n ⊗ ...⊗ f+1 ) , (5.7)

where f1 ≺ ... ≺ fn and P+
n denotes the total symmetrization, given by S = 1. These are

well-defined linear operators with dense domains and ranges which extend to unitaries since
the norms of P+

n (f+1 ⊗ ...⊗f+n ) and Pn(f+1 ⊗ ...⊗f+n ) coincide as a consequence of the ordering
of the supports of the f+k . The S-matrix is the product of these Møller operators,

S := W ∗outWin : H+ → H+ . (5.8)

Theorem 5.3. Assume that the vacuum vector Ω is cyclic for the field algebra F(O) for
some double cone O. Then the constructed model solves the inverse scattering problem for the
S-matrix, i.e. its scattering operator S reproduces S. More precisely, S (5.8) acts as

(SΨ+)n(θ) = Sn(θ)Ψ+
n (θ) , Ψ+ ∈ H+ , (5.9)

and the tensors Sn are given by

Sn(θ)α1...αn
β1...βn

= {Sιn(θπ(1), ..., θπ(n))
απ(1)...απ(n)
βπ(n)...βπ(1)

: θπ(1) ≤ ... ≤ θπ(n)} , (5.10)
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where ι ∈ Sn is the inversion permutation ι(k) := n + 1 − k and Sιn is defined in (2.16).
Explicitly, for n = 2,

S2(θ1, θ2)
α1α2
β1β2

=

{
Sα1α2
β2β1

(θ2 − θ1) ; θ1 ≤ θ2
Sα2α1
β1β2

(θ1 − θ2) ; θ2 < θ1
. (5.11)

Proof. Let θ ∈ Rn. Then there exists a permutation π ∈ Sn such that θπ(1) ≤ ... ≤ θπ(n). In
view of the ordering f1 ≺ ... ≺ fn, we have

Pn(f+1 ⊗ ...⊗ f
+
n )(θ) =

1

n!
Sπn(θ) f+1 (θπ(1))⊗ ...⊗ f+n (θπ(n)) , (5.12)

P+
n (f+1 ⊗ ...⊗ f

+
n )(θ) =

1

n!
F πn f

+
1 (θπ(1))⊗ ...⊗ f+n (θπ(n)) , (5.13)

with the θ-independent S = F (flip) in the second line. Thus Wout (5.6) takes the form

(WoutΨ
+)n(θ) = Wout,n(θ)Ψ+

n (θ) , Wout,n(θ) = {Sπn(θ)(F πn )−1 : θπ(1) ≤ ... ≤ θπ(n)} .
Similarly,

(WinΨ+)n(θ) = Win,n(θ)Ψ+
n (θ) , Win,n(θ) = {Sπιn (θ)(F πιn )−1 : θπ(1) ≤ ... ≤ θπ(n)} ,

where ι(k) := n+ 1− k is the total inversion permutation. This implies that S acts as

(SΨ+)n(θ) = Sn(θ)Ψ+
n (θ) , Sn(θ) = {F πn Sπn(θ)−1Sπιn (θ)(F πιn )−1 : θπ(1) ≤ ... ≤ θπ(n)} .

The F -tensors have the components (F πn )αβ = δ
απ(1)
β1

· · · δαπ(n)βn
and form a representation of Sn.

Furthermore, since Dn is a representation of Sn, one has

Sπιn (θ) = Sπn(θ)Sιn(θπ(1), ..., θπ(n)) .

Combining these two equations with the above formula for Sn gives (5.10). For n = 2, we have
ι = τ1 and Sι2(θ1, θ2) = S(θ2 − θ1), which gives (5.11). �

Explicitly, Sιn is a product of 1
2n(n−1) factors of S, corresponding to 1

2n(n−1) consecutive
two-body collisions in an n → n process. As there is no particle production, Theorem 5.3
shows that the constructed model has the factorizing S-matrix S based on S as its scattering
operator (provided it contains local observables). Often times the S-matrix is also expressed
by scalar products between improper asymptotic states of sharp rapidity. We note that in

case of a parity invariant S, i.e. Sαβγδ (θ) = Sβαδγ (θ), we obtain the more familiar formula (see

for example [AAR91])

out〈θ1, α1; θ2, α2|θ′1, β1; θ′2, β2〉in = δ(θ1 − θ′1)δ(θ2 − θ′2) · S
α1α2
β2β1

(|θ1 − θ2|)
+ δ(θ1 − θ′2)δ(θ2 − θ′1) · S

α1α2
β1β2

(|θ1 − θ2|) .

6. Examples of S-matrices

The construction presented so far was based on an arbitrary S-matrix satisfying the as-
sumptions collected in Definition 2.1; an explicit form of S was not needed. In this section,
we will complement the abstract analysis by providing some concrete examples of S-matrices.

In the approach taken here, any S-matrix defines a model. In the Lagrangian approach
to quantum field theory, on the other hand, a model is specified in terms of Lagrangian. A
connection between the two approaches can be made whenever the exact S-matrix of some
integrable model is available in the Lagrangian setting. This is the case for many models,
where S can be obtained by exploiting conservation laws which are assumed to also be present
in the quantum theory, comparison with perturbative results, and analyticity assumptions, see
[AAR91, Mus92, Dor98] and the references cited therein. Below we will see examples of such
models.
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The simplest class of S-matrices is the scalar one, where K = C and the mass spectrum
consists of just a single mass m > 0. This is the setting of theories containing only a single
species of neutral massive particles, and has previously been worked out in [Lec03]. In this case
the constraints on S imposed by Definition 2.1 simplify drastically, and it is possible to derive
the most general form of S ∈ S explicitly [Lec06]. One finds that the — here scalar-valued —
S-matrix takes the form

S(θ) = ε eia sinh θ
∏
k

sinhβk − sinh θ

sinhβk + sinh θ
, (6.1)

where ε = ±1, a ≥ 0, and the βk form finite or infinite sequences of complex numbers with
0 < Imβk ≤ π

2 , subject to certain symmetry and summability conditions [Lec06, Prop. 3.2.2]
which imply the properties Def. 2.1 i), ii), vii), and convergence of the product. In the scalar
case, the S-matrix is also referred to as scattering function.

This class of scattering functions S-matrices contains in particular the function

SShG(g)(θ) =
sinh θ − i sin πg2

4π+g2

sinh θ + i sin πg2

4π+g2

,

where g is a real parameter. This function is expected to be the exact scattering function of
the Sinh-Gordon model with coupling g [AFZ79, BS91]. It belongs to the subset of regular
scattering functions, defined as the ones with a = 0 and finite sequences {βk}. For such S,
it is also known that the modular nuclearity condition holds, and hence the vacuum vector is
cyclic for double cone algebras [Lec08]. Thus the assumptions about the modular nuclearity
condition made in Sections 4 and 5 are satisfied, and the full S-matrix can be computed as

(SΨ+)n(θ) =
∏

1≤l<r≤n
S(|θl − θr|) ·Ψ+

n (θ) , Ψ+ ∈ H+ .

In the matrix-valued case with dimK > 1, a simple class of S-matrices are so-called diag-
onal solutions (see also [Jim86, LM95b] for similar S-matrices arising in the context of Toda
systems). In these examples, one considers a spectrum of N neutral particles of the same
mass, that is, puts K = CN with some N ∈ N, conjugation α = α, and masses mα = m,
α ∈ {1, ..., N}. The S-matrix is defined as

S(θ)αβγδ := σαβ(θ)δαδ δ
β
γ , (6.2)

(no sum over α, β), and thus S(θ)αβγδ = S(θ)βαγδ can be regarded as a diagonal (N2 × N2)-

matrix. The functions σαβ appearing here are assumed to be continuous bounded functions

on S(0, π)→ C which are analytic in S(0, π).
Because of this analyticity, it is clear that θ 7→ S(θ) has the analytic properties required

in Definition 2.1, and because of the diagonal form (6.2), S satisfies items iii), v) and iv)
of that definition without further constraints on the σαβ. To implement unitarity, hermitian
analyticity and crossing symmetry of S, one has to require, θ ∈ R, α, β ∈ {1, ..., N},

σαβ(θ) = σαβ(θ)−1 = σβα(−θ) = σβα(iπ + θ) . (6.3)

With these constraints on σαβ, it is easy to verify that S as defined in (6.2) complies with all
requirements of Definition 2.1. We don’t give the most general form of the functions σαβ here,
but content ourselves with pointing out that particular examples arise when σαβ = σβα are
scalar S-matrices of the form (6.1).

A class of more involved S-matrices is given by the scattering operators of O(N) σ-models,
N ≥ 3, see [AAR91, Ket00] for general literature and [BFK12] for recent results on the form-
factors of these models. These models are defined by quantization of a field theory of N scalar
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fields ϕ1, ..., ϕN whose dynamics is governed by the interaction-free Lagrangian in the presence
of the spherical constraint

∑N
k=1 ϕk(x)2 = 1. This constraint gives rise to a non-linear field

equation, and it turns out that the corresponding field theory is perturbatively renormalizable
in d = 1 + 1 dimensions and exhibits an infinite number of conservation laws. By making
an ansatz exploiting the O(N)-symmetry, the factorizing S-matrix of this model can been
determined [ZZ78] (see also further references in [AAR91], and [SW78] for a supersymmetric
extension).

There has been a lot of interest in non-linear σ-models in two dimensions because of their
similarities to non-Abelian gauge theories in four dimensions, in particular regarding their
geometric nature, asymptotic freedom, and instanton solutions. We want to show here that
these models fit precisely into the present framework of inverse scattering theory, and thus
define them in terms of their S-matrix.

In our setting, the O(N) σ-models can be described as follows. The particle spectrum
consists of a single species of neutral particles of mass m > 0 with an internal degree of
freedom transforming under G = O(N), which acts on K := CN by its defining self-conjugate
irreducible representation, i.e. in particular α = α, α = 1, ..., N . The S-matrix is defined as
[AAR91, Chapter 8.3.2]

Sσ,N (θ)α1α2
β1β2

:= σ1(θ)δ
α1α2δβ1β2 + σ2(θ)δ

α1β2δα2β1 + σ3(θ)δ
α1β1δα2β2 , (6.4)

with the functions

σ2(θ) := Q(θ)Q(iπ − θ), with Q(θ) :=
Γ( 1

N−2 − i
θ
2π )Γ(12 − i

θ
2π )

Γ(12 + 1
N−2 − i

θ
2π )Γ(−i θ2π )

, (6.5)

σ1(θ) := − 2πi

(N − 2)

σ2(θ)

iπ − θ
, (6.6)

σ3(θ) := σ1(iπ − θ) = − 2πi

(N − 2)

σ2(θ)

θ
. (6.7)

Proposition 6.1. The S-matrix Sσ,N defined in (6.4)–(6.7) complies with Definition 2.1 for
the particle spectrum given by G = O(N), V1 = id, m > 0.

Proof. As the calculations necessary here can mostly be found in the literature – see for
example [ZZ79], and [Sch11] for a more detailed account – we will be brief about the proof. To

begin with, we note that the function Q is continuous and bounded on S(0, π), and analytic
in the interior of this strip. The analyticity can be checked by verifying that all poles of the
Gamma function lie outside the strip, and the boundedness can be established by standard
estimates on the Gamma functions [Sch11]. As Γ has a simple pole at the origin, θ 7→ Q(θ) has
a simple zero at θ = 0. Hence the poles in the fractions appearing in the definitions of σ1 and
σ3 are compensated by zeros, and we conclude that σ1, σ2, and σ3 are analytic in S(0, π), and
continuous and bounded on the closure of this strip. This implies that Sσ,N has the analytic
properties required in Definition 2.1.

The verification of unitarity i), hermitian analyticity ii) and the Yang-Baxter equation iii)
can be found in [ZZ79, Sch11]. The TCP invariance v) of Sσ,N holds because α = α for all

α ∈ {1, ..., N} and Sσ,N (6.4) has the two symmetries Sσ,N (θ)α1α2
β1β2

= Sσ,N (θ)α2α1
β2β1

= Sσ,N (θ)β1β2α1α2

(corresponding to invariance under parity and time reversal).
Concerning crossing symmetry, we note that σ2(iπ − θ) = σ2(θ), σ1(iπ − θ) = σ3(θ), and

σ3(iπ − θ) = σ1(θ). Hence

Sσ,N (iπ − θ)α1α2
β1β2

= σ3(θ)δ
α1α2δβ1β2 + σ2(θ)δ

α1β2δα2β1 + σ1(θ)δ
α1β1δα2β2 = Sσ,N (θ)β1α1

β2α2
,

i.e., Sσ,N is crossing symmetric.
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Finally, the mass condition iv) is trivially satisfied here since only a single mass value appears
in the spectrum. By straightforward computation, one also checks that each of the three terms
in (6.4) is O(N)-symmetric in the sense that it commutes with M ⊗M for any M ∈ O(N).
Hence also property vi) holds, and the proof is finished. �

7. Conclusions

Whereas the models treated in [Lec08] were restricted to just one species of neutral particles,
the extension carried out here shows that the presented method is also capable of realizing
integrable models with any number of particle species, transforming under an arbitrary global
gauge group. A particularly interesting class of models which is now accessible by operator-
algebraic methods are the nonlinear O(N) σ-models, which share some features with non-
Abelian gauge theories in four dimensions. In view of the thorough analysis these models have
seen in other approaches, there seems to be no real doubt that these models do indeed exist as
well-defined quantum field theories. By defining these models via their scattering matrix, also
a hard existence proof is now within reach in the approach taken here: All that remains to
do is to verify the modular nuclearity condition for the S-matrix (6.4). This analysis requires
quite some technical work and will be presented elsewhere [Ala13].

But already at the present stage good evidence exists which indicates that this condition
is likely to hold. The point is that the σ-model S-matrix (6.4) does not only comply with
Definition 2.1, but in fact satisfies somewhat stronger regularity properties. Namely, given
any ε > 0, the S-matrix θ 7→ Sσ,N (θ) extends to a bounded and analytic function on an

extended strip S(− 2π
N−2 + ε, π + 2π

N−2 − ε) ⊃ S(0, π), properly containing the physical region.

Furthermore, at θ = 0 one finds Sσ,N (0) = −1. In the scalar case, the existence of such a
bounded analytic extension on the one hand, leading to sharp Hardy norm estimates, and the
value −1 of the S-matrix at θ = 0 on the other hand, improving the nuclearity estimates via
the Pauli principle [Lec05], were essential for establishing the modular nuclearity condition,
and thus the existence of local field operators. These mechanisms can probably also be used
in the case of the O(N) σ-models.

It has to be mentioned that a rigorous comparison of models constructed via different
techniques like for example continuum limits of lattice theories and inverse scattering theory,
respectively, is not straightforward because the quantities that are explicitly accessible depend
on the chosen approach. As explained earlier, we take the point of view that the two-particle
S-matrix is a good choice for defining the interaction in the case of integrable models. An
identification of the models presented here, for example starting from the O(N) σ-model
S-matrix, with σ-models defined by, say, a Lagrangian and perturbative quantization and
renormalization, would best proceed by proving that the solution of the inverse scattering
problem does not only exist in this case, but is also unique. Whereas such a proof is currently
unmanageable for general quantum field theories, it seems well within reach in the realm of
integrable quantum field theories with factorizing S-matrices [Ala13].

One of the most fascinating aspects of these models is their asymptotic freedom, reminiscent
of QCD. This property, although often taken for granted, has not been rigorously proven up
to now, see [Sei03] for a detailed discussion. Also in the operator-algebraic approach taken
here, a proof of asymptotic freedom would require a deeper analysis. However, the basic tools
for such an investigation are in place: As in the scaling limits for scalar models [BLM11], a
short distance limit of the O(N) σ-models decomposes into two chiral massless theories which
still contain the S-matrix (6.4). Showing that these chiral nets are isomorphic to free field
nets would then amount to a proof of asymptotic freedom. We hope to come back to these
questions in a future work.
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[DHR69] S. Doplicher, R. Haag and J. E. Roberts. Fields, observables and gauge transformations. I. Commun.
Math. Phys. 13 (1969) 1–23
http://projecteuclid.org/euclid.cmp/1103841481

[DHR71] S. Doplicher, R. Haag and J. E. Roberts. Local observables and particle statistics. I. Commun. Math.
Phys. 23 (1971) 199–230
http://projecteuclid.org/euclid.cmp/1103857630

[DHR74] S. Doplicher, R. Haag and J. E. Roberts. Local observables and particle statistics. II. Commun. Math.
Phys. 35 (1974) 49–85
http://projecteuclid.org/euclid.cmp/1103859518

[DL84] S. Doplicher and R. Longo. Standard and split inclusions of von Neumann algebras. Invent. Math.
75 (1984) 493–536

[Dor98] P. Dorey. Exact S-matrices. Preprint (1998)
http://arxiv.org/abs/hep-th/9810026

[Dyb05] W. Dybalski. Haag-Ruelle scattering theory in presence of massless particles. Lett. Math. Phys. 72
(2005) 27–38
http://arxiv.org/abs/hep-th/0412226

[Fad84] L. D. Faddeev. Quantum completely integrable models in field theory, volume 1 of Mathematical
Physics Reviews, 107–155 (1984). In Novikov, S.p. ( Ed.): Mathematical Physics Reviews, Vol. 1,
107-155
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